LIDERAZGO (PROFESORA)

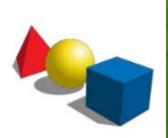
ASIGNATURA: MATEMÁTICAS II

GRADO: 2°

GRUPOS: A, B, C Y D

PROFESORA: GLORIA GABRIELA GARCÍA RODRÍGUEZ

SEMANA 1 (Del 22 al 26 de Marzo 2021)


APRENDIZAJE ESPERADO: Calcula el volumen de prismas y cilindros.

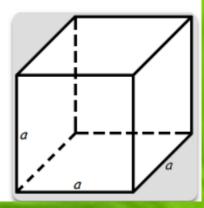
ÉNFASIS: Resolver problemas que impliquen el cálculo del volumen de prismas rectos.

CONCEPTO DE VOLÚMEN

El volumen específico corresponde al espacio ocupado por la unidad de masa. En ese sentido, es la magnitud inversa a la densidad. Pensemos, por ejemplo, en un bloque de hierro y uno de piedra pómez exactamente iguales. Ambos ocupan el mismo espacio, es decir, tienen el mismo volumen específico, pero debido a que el hierro presenta una densidad mayor, sus pesos específicos difieren enormemente. En el Sistema Internacional se mide en m³/kg.

El concepto volumen proviene del latín volumen. El volumen como magnitud es entendido como el espacio que ocupa un cuerpo. La misma posee tres dimensiones: alto, ancho y largo.

VOLUMEN DEL CUBO Y PRISMA

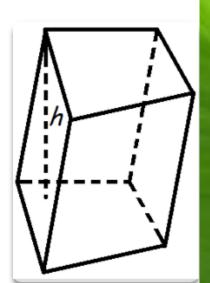

Volumen del cubo

El volumen del cubo equivale a la longitud de su cara a tercera potencia.

Formula volumen de cubo:

$$V = a^3$$

donde V - cubo volumen, a - longitud de la cara del cubo.


Volumen de la prisma

El volumen de la prisma equivale a la multiplicación del área de la base en la altura.

Formula volumen de prisma:

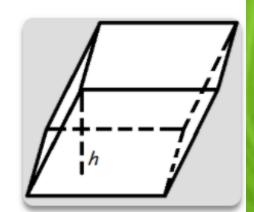
$$V = A_b h$$

donde V - prisma volumen, A_b - área de las bases de la prisma, h - longitud de la altura de la prisma.

VOLUMEN DEL PARALELEPÍPEDO Y ORTOEDRO

Volumen del paralelepípedo

Volumen del paralelepípedo equivale a la multiplicación del área de la base por la altura.


Formula volumen de paralelepípedo:

$$V = A_b \cdot h$$

donde V - paralelepípedo volumen,

 \boldsymbol{A}_b - área de las bases de la paralelepípedo,

h - longitud de la altura de la paralelepípedo.

Volumen del ortoedro


Ortoedro volumen equivale a la multiplicación de su longitud, latitud y altura.

Formula volumen de ortoedro:

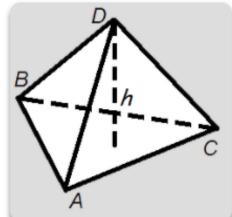
$$V = a \cdot b \cdot h$$

donde V - ortoedro volumen,

- a longitud,
- b latitud,
- h altura.

VOLUMEN DE LA PIRÁMIDE Y TETRAEDRO

Volumen de la pirámide

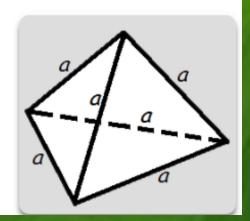

El volumen de la pirámide equivale a la tercera parte de la multiplicación del área de su base en la altura.

Formula volumen de pirámide

$$V = \frac{1}{3} A_b \cdot h$$

donde V - pirámide volumen, A_b - área de las bases de la pirámide,

h - longitud de la altura de la pirámide.



Volumen del tetraedro regular

Formula volumen de tetraedro regular:

$$V = \frac{a^3\sqrt{2}}{12}$$

donde V - tetraedro regular volumen, a - longitud de la arista del tetraedro regular.

VOLUMEN DEL CILINDRO Y CONO

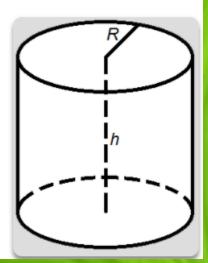
Volumen del cilindro

El volumen del cilindro equivale a la multiplicación del área de su base por la altura.

Formula volumen de cilindro:

•
$$V = \pi R^2 h$$

•
$$V = A_b h$$


donde V - cilindro volumen,

 A_b - área de las bases de la cilindro,

R - radio de la cilindro,

h - longitud de la altura de la cilindro,

 $\pi = 3.141592$.

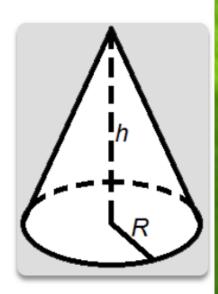
Volumen del cono

El volumen del cono equivale a la tercera parte de la multiplicación del área de su base por la altura.

Formula volumen de cono

$$V = \frac{1}{3} \pi R^2 h$$

$$V = \frac{1}{3} A_b h$$


donde V - cono volumen,

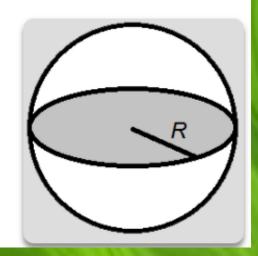
 A_b - área de las bases de la cono,

R - radio de las bases de la cono,

h - longitud de la altura de la cono,

 $\pi = 3.141592$.

VOLUMEN ESFERA


Volumen de la esfera

El volumen de la esfera equivale a cuatro tercias de su radio a la tercera potencia multiplicado por el número "pi".

Formula volumen de la esfera

$$V = \frac{4}{3}\pi R^3$$

donde V - esfera volumen, R - radio de la esfera, π = 3.141592.

FORMULARIO

Cuerpo	Nombre	Aristas	Vértices	Fórmula del volumen	Desarrollo plano
	Cubo	12	8	$V = \ell^3$ Lado = ℓ	
	Prisma rectangular	12	8	V = b a h b = Largo de la base a = Ancho de la base h = altura del prisma	
	111111111111111111111111111111111111111	1	1		
	Prisma hexagonal	18	12	V = P • ap (a) P = perímetro ap = apotema a = altura	
Generalizando el volumen de los prismas es: Superficie de la base por altura					
	Pirámide triangular	6	4	$V = \frac{\text{área de la base x h}}{3}$ $\text{Área de la base} = \frac{bh}{2}$ $\text{h = altura de la pirámide}$	

Pirámide hexagonal	12	7	$V = \frac{\text{área de la base x h}}{3}$ Área de la base = $\frac{P \bullet ap}{2}$ h = altura de la pirámide	
Pirámide cuadrangular	8	5	$V = \frac{\text{área de la base x h}}{3}$ Área de la base = ℓ^2 h = altura de la pirámide	

Completa la tabla siguiente.

0	Datos o	le la base	Altura del	Volumen
Cuerpo	Largo (cm)	Ancho (cm)	cuerpo (cm)	(cm³)
Prisma cuadrangular	9		10	
Prisma cuadrangular	4			240
Prisma rectangular	8	2	5	
Prisma rectangular		2	20	180
Pirámide rectangular	5	3		180
Pirámide cuadrangular	5		10	
_	Datos o	le la base	Altura del	Volumen
Cuerpo	Lado (cm)	A potema (cm)	cuerpo (cm)	(cm³)
Prisma pentagonal	5	3	12	
Pirámide hexagonal	6	4		360
Prisma octagonal	6		20	240
0	Datos o	le la base	A ltura del	Volumen
Cuerpo	Base (cm)	Altura (cm)	cuerpo (cm)	(cm³)
Prisma triangular		4	12	168
Pirámide triangular	5	9	10	
Pirámide triangular	4	6		40

EVALUACIÓN DE LAS ACTIVIDADES DE LA SEMANA 1

ASPECTO	PUNTAJE	
Ejercicio 1	10 Puntos	

Fecha límite de entrega: Viernes 26 de Marzo del 2021 antes de las 15:00 horas.

- Enviar la actividad utilizando Classroom o por excepción al correo gloria.garciar@aefcm.gob.mx desde el correo institucional del alumno.
- ❖ Si la actividad se realizó en el cuaderno favor de escanear el documento o tomar una fotografía de calidad y con el nombre del alumno en la parte superior de la hoja. En caso de realizar la actividad en archivo Word, anexar el documento al correo.
- En el asunto del correo escribir el nombre completo del alumno comenzando por apellido paterno acompañado del grado y grupo.